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%his memorandum describes a model of reactive surveillance
in which two classes of contacts occur. A single search vehicle
attempts to maintain some localization of a single target vehicle
with contacts occurring intermittently as a Poisson process but
only when the target is within a certain range (exposure disk) of
the searcher. An external surveillance system is also present;
it produces contacts as a Poisson process irrespective of the
target position. Searcher tactics are assumed to approximate
optimal search based on an assumed circular normal target dis-
tribution determined solely by the class (searcher or external
system) qgughgu@9§;mrecent—Fontact and time since that contact.

S anty/
NIl ikl W
DI TaAB )
Unnaseaneod L] / e
Justisieation ] —

DISTRIBUTION STATEMENT ¥
- .'Approved for public teleare,
Distribution Unlimite.!

80 2 27 140

e ]

Tiotriruntiong

P irevitity Codes

‘i‘it

B N T R Ve S DR PP

Availand/or
special

————




The remainder of this memorandum is divided into sections.

The mathematical model and possible generalizations are
described in the first section. Numerical techniques employed
for the evaluation of limits and integrals are discussed in the
second. The computational algorithm is summarized in the third
section. A computer program listing is included as an appendix.
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Mathematical Model

Three types of contacts are considered; those by the
searcher, those by the external system when the target lies
within the searcher's exposure disk, and those by the external
system when the target lies outside this disk. Probabilistically,
the sequence of contact types and corresponding contact times is
described as a Markov renewal process in which the distribution
of next contact type and recontact time depends only on the type
of most recent contact; the process regenerates with each contact.
The sequence of contact types is a Markov chain. The intervals
between contacts are described separately as inhomogeneous,
continuous time parameter, Markov processes with different time
dependent transition functions and initial probability vectors
according to the type of most recent contact. These processes
have five states corresponding to the three types of contacts
(absorbing states) and target locations within and outside of the
searcher's exposure disk before rccontact. The assumed circular
normal target distribution is described by a linear datum growth
law with initial datum area determined by contact type and datum
growth rate determined by target motion statistics.

These concepts are intended to model reactive surveillance
by ANVs; the external contacts might correspond to those generated
by SOSUS or by all other surveillance systems combined. However,
the concepts generalize to situations involving differing numbers
of contact types, transition functions, and datum growth laws.

The principal measure of effectiveness derived in this memo-
randum is distribution of actual target range from the expected
(by the searcher) target location at a random time instant. This
has obvious application to anti-SLBM defense. Many other such
measures could be derived from the information generated by the
model.,
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The five states in the interval following a contact are

numbered and described as follows:

State 1 - Recontact by the external surveillance
system has occurred while the target is
exposed to contact by the searcher.

State 2 - Recontact by the external system has
occurred while the target is unexposed
to the searcher.

State 3 - Recontact by the searcher has occurred.

State 4 - Recontact has not yet occurred and the
target is exposed.

State 5 - Recontact has not yet occurred and the

target is unexposed.

The three types of contacts have the same numbering as the first

three states.

Let

process in

state i last

)(1-1,
after last|type j i=1,

Pij(t) - Probability'(at time t |contact of

contact

and
PI(E) = (Ppy(e),"" " Rgy(e)), (5 =

where

t = time since last contact.

1,2,3)

Three separate Markov processes are obtained for j = 1,2,3. By

definition,




pL(0) = (0,0,0,1,0)
and
p2(0) = (0,0,0,0,1).

Since the target must be exposed for contact by the searcher to
occur,

p3(0) = (0,0,0,1,0).

The model uses three absorbing states
contact types although the use of only two
searcher) would appear more natural. This
initial probability vectors, Pj(O), can be

corresponding to
(external and by
is done so that the
specified a priori.

In adapting the model to a more general situation in which there
are N (in this case two) classes of contacts and M (in this case
also two) intervening states, as many as MN (in this case three
sufficed) absorbing states might be required.

Let

unconditional probability
that target is exposed to
searcher during search of 1
datum area A

5(A) =

and

-
rate at which unexposed targets
enter exposure disk during

search of datum area A. 1

2(A) =

)

or

target

unexpOSed]
at time t+T |, time t } r=0.

{Probability [tafget exposed

-5-




"Datum area'" is defined by

A=6mno? (1)
where 02 is the parameter characterizing the assumed circular
normal target distribution. This is the area of a bounded region
which, if it contained the target with a uniform location distri-
bution, would require the same expected effort to detect as is
required by a circular normal distribution with parameter o2
(see reference [al). While in actuality the quantities & and »
depend on geographic details and are not functions of A alone,
the following formulas are reasonable approximations:

; €(A) = 1-exp(-m REZ/A) (2)
| and
[ 1(A) = 2RgV_/A, (3)
where
Rp = radius of exposure disk, and
; Vg = searcher patrol speed.

Formula (2) subsumes searcher allocation of effort and non-
regularity in the search region. Formula (3) is familiar and
standard for TTR2 << A, it is shown below that it is sensible for
small A as well.

Consider an arbitrary Rp and A. If the target 1s not
exposed to detection, it is confined to a region of expected area

]
-
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(=)
A exp .
A

‘Let § be the speed at which the boundary of the disc of exposure

sweeps through this unexposed area and let W be effective sweep

width. For TTREZ << A, the entire boundary intersects A,

S - Vg and W~ 2Rg. For ﬂREz >> A, only a small portion of the

boundary intersects A, and speed perpendicular to that segment ]
is Vg(2/m). But with probability .5, that segment is sweeping

into exposed area, i.e., no new area is exposed. Thus S = s/

and W~ the length of boundary intersecting A.

f‘ Now if the target is located in the unexposed area, the !
: rate of entry into the disc of exposure is
™

A exp (=TR;“/A)

Equating this to (3), one has

2

~ 2R,V -TR

o LS exp( E ) (4)
A

which, for ﬂREz << A, gives the expected result, W~ ZRE. As A

decreases in size, the right-hand member of (4) decreases, and

can be bounded by

Y < (Y?)G)% (fZ exp (-.5)).

Taking § = S/7, a presumed minimum value,




Ws (g)% (2.694),

a very reasonable result. Thus formula (3) appears sensible
, for small A, despite the inverse power dependence.

i The assumed linear datum growth law after contacts of type
J is

Aj(t) - Aj(O) +pt (5)

! where

; Aj(t) = the datum area at a time t after a contact
g of type j, and

4 p = datum growth rate,

for j - 1’2,30
Since type 1 and type 2 contacts both come from the same external
surveillance system, the resulting initial datum is the same for
each (Al(O) - AZ(O))' The growth rate p is determined by target

motion statistics. If the target is moving in an unbiased random
walk with

Vt = target speed, and

C = mean time between target course changes,

it may be shown that the target location distribution is approxi-
mately circularly normal with density in polar coordinates ¢,6),

2
1 -r
£r,0) = v o (;:f(?)) (6)
-8 -
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where
o2(t) = v, 2 ¢? [t/C~ (1= exp(-t/C)].
Thus for large t,

202(t)

ot

v.2¢

t

and, since A = 6"02,

- 2
p=6mV.SC. (7)

Formula (7) is used to compute p in applications.

Let

o = external recontact rate

9 external
= — { Probability|recontact by go Ei;gngact '
oT time t +7T y re0

A = searcher recontact rate for an exposed target

3 searcher target exposed
2 [ 20 o LT
T time t+7 by time t re0

.




exposure disk after a type ]

3 target
= — { Probability|exposed at
aT time t +17

‘ and
3 ' o
'- Yj(t) = rate at which exposed target
3 target
= — { Probability|unexposed at
3T time t +7
where

t = time since last contact,
for i = 1,2,3.

It is assumed that the rates & and \

requires these assumptions, which seem qui
follows that

o

0 0
. 0 0 0
dpd(t) 3
= pI(t) 10 0 0
dt
0 X
a 0
- 10 -

rate at which unexposed targets enter the

contact

last contact of

target unexposeé]
14
type j

at time t and J

T=0

s leave exposure disk

at time t and
last contact of

tarzet exposed
} .
type j T=0

are actually constant

and that the rates Bj and Yj are functions of t alone. The model

te reasonable. It

0 0
0 0
0 0

-[a+A+Yj(t)] Yj(t)

Bj(t) ;ta+ﬁj(t)ld

(8)




opiala

PR A 7 . x

Now

B5(e) = (Ay(t))

2RV
- - E's (9)
j(t)
by formula (3). For the casea = \ =0, P4j<t) = §(Aj(t)) and
the fourth equation in (8) becomes
£ (A5 (E))A;"(£) ==y (£) £ (A (£)) +B,(£) (1= E(A;(ED)).
Given a form for £ this can be solved for Yj in terms of Bj and
A;. Using formula (2) for §,
J
- dA.(t)
- - 2 i
exp(-R;Z/A;(t)) "Re o |
Yj(t) = Ve BJ(t) + 7
1- exp(-TTRE /Aj(t)) [Aj(t)]
i 2 r 2
esxp(-TTRE /Aj(t)) TRp“p
= B.(t)+ . (10)
1~ exp(-TRy %A (e)) || [ay(6)1

System (8) could be easily modified to discard external
contacts occurring at times when their information is inferior
to that already available from the last contact. This would
entail replacing the term o in (8) by

0 if A.(t) < A,(0)
aj(t) - J 1 .
a otherwise

This modification would have little effect in most cases.




Byy = cae Pyyt)  for 1,3 =1,2,3.

It may be shown that since o > 0, the matrix [Bij] is well
defined, has all positive entries, and all column sums one.
[Bij] is the transition matrix of the Markov chain characterizing
the sequence of contact types. It has a unique eigenvector
summing to one with eigenvalue one; this is the vector of steady
state probabilities. Let

steady state probability vector for
(91,62,93) = |Markov chain characterizing sequence | .
of contact types

1f
' - BiraBap= 1) =Bpshyy
(Byy) = 1)(Byy = 1) =By ,Byy
By3(Byy = 1) =By4Byy
§2 - , and
(B3 = 1)(Byy= 1) =By ,Byy
§3 = - 1
then
3
ej - _j-—— for j - 1,2,3.
b 40,42,
Define

recontact within|last contact
P):'obabilit:y[time t of type } ]
.12 -

(11)

(12)




and

t
nj(t) - [ Cl-Qj(s)] ds . (13)
0

Then

‘ 3
4 Qj(t) - 151 Pij(t) . (14)

Integrating by parts,

3 T conditional expectation |
of duration of portion o
of interval between s if s=< t
contacts where time -

b since last contact < t 0

given that last contact
 of type j

} Q'(s) ds
t if s2 ¢t

-

- Qj(t). (15)

In particular, defining

= lim

Expected value of
L. = time until recontact (17)
j after contact of *

type j

This limit certainly exists since & > 0 and (8) imply that
1-Qj(t) is bounded above by exp(-at).

- 13 -




The next derivation assumes that the Markov chain of contact
types has reached its steady state; in reality this condition and
its consequences are approached asymptotically for long search
histories. Let

Expected value of
= | time between contact (18)

lj of type j and last ]
preceding contact ' ]

Then, by Bayes Theorem, 1

3 preceding ]
1y = I L Probability |contact of|Soncast of.
k=1 type k ype J J
}?} B.kek '
- I_ ]
k=1 k)3
z B.iei
i=1 J
g
J
Also, defining
T = |unconditioned expected value ' (20)
of time between contacts ’ ]
i
T g (21)
= 8, L, . 2
kel KK

Consider a long interval of search history of duration Ty

- 14 -




for which the initial state is assumed known*; Let

T = Fa random time instant, uniformly
distrlbuted on [0,Ty]
s r-the type of the last contact preceding
N T (0 if there is no such contact) ’
j, = the type of the first contact following] and
2 T (0 if there is no such contact) J ’

e (0 if there is no such contact)

T = [t ime elapsed at T since last contact]

The random variables jl, j2, and Te all have limiting dis-
tributions as Ty = = which are independent of the initial state.
These distributions are:

. s o= 21 o for 2 ;
i = i1 = . (for 2,3;
Probability CJZ j] (by ({l), ( ): and (20)) ’ (23)
and 3
kr. 0,80, (t) 0
. - k=1 for 0 < t < =3
Probebility (T, < t] = =—=—— (by (11), (15), and (20)) (24)
Now define
- . datum area A < Y
F(Y) = Probability [at random time T] , and
. 0 if Ys A.(0)
Aj l(Y) bl j .
unique t such that Aj(t) = Y otherwise
;-- -------

Here the model is regarded as a five state process with continu-
ous time parameter inwhich the three states corresponding to
contacts are attained only for discrete instants.

- 15 -




Then by (24),

3 -1
L 0,0 (A H(Y))

o k=1 )
F(Y) T (25)

2

With an assumed circular normal datum with parameter 0“, formula

(6) implies

target within 2, 9
Probability | distance R of | = 1 = exp(~R“/20°),
datum center

Defining

Unconditional steady state probability
G(R) = | that target is within distance R of ,
datum center

2 dF(emx)
G(R) = f {1-exp(-R“/2x)] ———— dx , using (1).
0 dx

Integrating by parts and changing variables, 1

2 /'“ exp(-31TR2/U)F(U)
G(R) = 3R du .
0

U2

Using formulas (25) and (5) for the functions F and Aj and
changing variables again leads to

nk(t)dt; . (26)

mpR? 3 : fexp[-BﬂRz/(Ak(O)+pt)]
k 0 (Ak(0)+pt)2
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Evaluation of Limits and Integrals

System (8) is evaluated numerically by the Runge-Kutta
method for j = 1,2,3. The vectors PJ(t) -(Plj(t),’“ P5 (t))
and dpd/dt = (Pl '(t),“’,PS '(t)) are available explicitly at
each increment. The evaluatlon is carried out over the interval
(o, Tmax]’ where T, is chosen so that the recontact probability,
Qj(Tmax),will be quite large (say 2 .95) for each j. The contact
type transition probabilities are

lim
Bjj = t—= Pyj(t).

necessarily, a convenient and reasonable approximation is

P,."(T__. ) 3 :
Byy ™ Pij(Tmax) 313 max (1-i§1Pij(Tmax)) . (27)

' Thax
i=1 Pyj ( )

The functions Qj(t) were defined as

t
nj(t)-f (1-0Q;(s)lds
0

where Qj(s) - i%lPij(s). Since values of the Pij and their
derivatives are explicitly available at fine increments from the
Runge-Kutta evaluation of system (8), the Qj can be obtained at
the same time to reasonable accuracy by trapezoidal integration




J. The limits

for times in the interval (O, Tmax

T
L m Qj(t)

t=ew

are also required. Approximations to the Lj are obtained by
assuming that the probability of no recontact becomes a negative
exponential after a long time. This assumption is reasonable,
particularly if datum growth really ceases after a long time.

More precisely it is assumed that for t 2 T _,

1- QJ(t)

1- QJ(Tmax)

= expl-¥;(t - Ty, )2

for some constant wj. This leads to the approximation

[1-Q3(Tyy,))”

Q;' (Tngs)

)+ (28)

Ly~ 05(Tnax

which is calculable since Qj’ Qj’ and Qj' are all available for

t = Tmax’

The integrals in

G(R) =

2 2
3mpRS 3 -37R 0) + ]
p ekf expl /(A (0) +p (t) 0, (&) dt
0

z )

must be evaluated for a number of values of R, The portion of
each integral in the interval [0, T, 1 is evaluated from a table
of values of ¢, 0, (t)) which was saved from the Runge-Kutta
integration. The increment size changes several times in the
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table. Simpson's rule is used separately on each interval with
a constant increment size; trapezoidal integration is used
wherever an odd subinterval is left over. These integrals have
substantial "tails” in the interval [T _ ., ®]. These are
estimated by assuming that for t > Thax’

Ak(O) +pt ~ pt.

i This leads to the approximation

R"z Tnax exp[-3"R2/(Ak(0) +pt)]

G(R) ~
0 (4, (0) +pt)*

3
Z {e, 0, (t)dt
K=1 k k }

+ [1 - exp(-3"R2/p Tmax)} . (29)
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Summary of Computational Algorithm

The algorithm is embodied in a computer program which is
included as Appendix A. Inputs are:

V_ = searcher patrol speed (nm./hr.),
Rg = radius of exposure disk (nm.),

a = external recontact rate (hr.'l) when target
"is exposed,

A = searcher recontact rate (hr.'l),
p = datum growth rate (nm.z/hr.),

Al(O) = initial datum size after external contacts
(nm.“), and

A3(0) = initial datum size (nm.z) after searcher
recontacts.

The systems of linear first-order differential equations
(8) are integrated over the interval [0, Tmax] by a library
Runge-Kutta routine for j = 1,2,3. The rates B.(t) and Yj(t)
are calculated by formulas (9) and (10) using the datum growth
law (5). Values of Qj(t) and .(t) are calculated simultaneously
as discussed earlier using formulas (13) and (14). Values of t
(time since last contact) and Qj(t) are retained for later use
for a number of increments. The reason for retaining the time
values is that the Runge-Kutta routine determines and adjusts its
own step size, defying user control. Values of t, Plj(t),
sz(t). P3j(t), Paj(t)’ st(t), Qj(t), and Qj(t) are printed for
a number of values of t.

-20-




The limits Bij and Lj are calculated by formulas (27) and
(28). The steady state contact type probabilities SJ are

calculated by formula (12). The Bij' Lj, and aj are then
printed out.

Values of the range distribution G(R) are calculated from
the tables of t, Qj(t) and printed for the values R = 5,10,
15,°°*,200 nm., as discussed earlier using formula (29).

Peter S. Shoenfel

Reference [a): L. D. Stone, Theor; of Optimal Search, Academic
Press, New York, R
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APPENDIX A

COMPUTER PROGRAM LISTING

DIMENSION PRMT(S)yDERP(S)yF(S) rAUX(8+5)
DIMENSION FRC(Z»3)yIFD(393) 9 T(3,400) yOMEGA(3I»400)
DIMENSION OMINF(3)»y THETA(I) yR(393)sN(3I)
REAL LAMEDA )
COMMON VSrALPHAY»RyLAMEDAYRHOYAOLsAO2y JsFDeIFD, Ty OMEGAY
2 OMINFsN» TLAST»FILAST
DATA FRMT/049400.90.062590,0001+0./
DATA NDIM/S/yTMAX/300./
READ FARAMETERS
TYFE 10
FORMAT(1Xy ‘VSyRErALFHAYLAMRDAYRHOYyAZEROL yAZERO3? /)
ACCEFT 20,VSyRyALFHAYLAMBIAYRHO»AO0L »AO2
FORMAT(7G)
EXTERNAL FCTyOQUTP
INTEGRATE 0.D.E, SYSTEM FOR EACH CONTACT TYPE
BY RUNGE KUTTA METHOD USING SUBRODUTINE RKGS
FRMT(2)=TMAX
DO 100 J=1,3
FPRMT(S5)=0,
DO 30 K=1+5
FP(K)Y=0.
DERF(K)=0,2
IF(JNE.2)F(A)=1,
IF(JLEQ.2)F(S)=1,
N(J)=0
OMINF(J)=0,
TLAST=0,
PLLAST=0,
TYFE 504
FORMAT(20X» TYPE’»13»’ CONTACT’//4%Xs’T’y SXe’P1’y 4Xy»
2 P2y AX9»’'F3’y AXy'FA4’y AXy'PS5’y AXe’PD’sAXy 'OMEGA’//)
CALL RKGS(FRMTsPyDERFyNDTIMy IHLF¢FCTyQUTF s AUX)
TYPE 110 IHLF
FORMAT(1Xy " IHLF='914//)
FIND LIMITS TO OBTAIN TRANSITION MATRIX E(IyJd) AND
MEAN HOLDING TIMES OMINF(¢J)
DO 200 J=143
FRTOT=FLO(Jy 1)4+PDCIy 2)+FN(I9 3)
DPDTOT=DFDC(Is 1)4DFDCIy 2)+DFI( S 3D
OMINF () =0OMINF(J)+C(1 . ~FOTOTYXX2/DFDTOT
Do 200 I1=1,3
EB(Iy )=PRCJdyI)+DPRCSy D)X (L. ~PRTOT)/DFDTOT
FIND EIGENVECTOR OF E(I,J) TO GET STEADY STATE PROBARILITIES
OD=(B(1r1)=1)X(R(292)-1.)~R(1»2)%XE(2,1)
THETACL)=(B(1s3)XK(R(292) =1, )=R(293)XKE(12))/D .
THETA(2)=2(B(2s3)X(EB(1s1)~=1.)~R(1¢3)XR(2y1))/D
THETA(3)=~-1,
SUM=THETA(1)+THETA(2)+THETA(3) ~mT (AL
DO 2.9 J=1,3 73T ’)U“TJTYPRA“*ICMSLE

B
THETA(J)=THETACJ) /SUM Tgﬁii‘gf’f i:mmw [OUDG e

-—




280

300

400
500

510
600

20

30

PRINT THESE RESULTS
TYPE 260s0OMINFyTHETAs ((R(I»J) o I=193)9I=1+3)
FORMAT(//720Xs ' MEAN HOLDING TIMES’//
2 3(IXIF1B.5)/7720X ‘STEANY STATE PRORARILITIES’//3(3XyF13.5)//
3 20X " TRANGITION MATRIX /Z/Z73CI(EXFL13.5)7))
CALCHATE RANGE DTSTRIRUTION AND PRINT
TYPL 270
FORMATC/ZZ0 X0y PRONGE 2 v X e ‘CUMGFROB. /)
DO 600 Ke1lsAD
KRty o XN
FIROLGO
) S00 J=1+3
5UM=0,
NN=0
TOLD=0.
IF(NNJEQ.N(I))BO TO 400
H1=T(JsNN+1)~-TOLD
IF(NN+2,LENCI)IH2=T(Jr NN+2)~T(JsNN+1)
IF(H2.NE.H1.,0R.NN+2.,GT.N(J))>G0O TO 300
SUM=SUM+HLIX(ELT(NNsRR)+4 XELT(NN+1sRR)I+ELT(NN+2/RR) ) /3.
TOLD=T(JsNN+2)
NN=NN+2
GO TO 280
SUM=SUM+HLIX(ELT(NNsRRY+ELT(NN+1+RR))/2,
TOLD=T(JyNN+1)
NN=NN+1
GO TO 280
FROR=FROB+THETA(J) XSUM
CONTINUE
FROB=9,424778XRHOKRRXRRXFROE/ (THETA(L )Y XOMINF (1) +
2 THETA()XOMINF (2)+THETA(I) XOMINF(3))+
3 1,~EXF(-9,424778%XRRYXRR/ (RHOXTMAX))
TYFE S510sRRsFROE
FORMAT(1XsFb.192X»F7.3)
CONTINUE
GO TO 5
END
FUNCTION ELT(IsRK)
EVALUATES INTEGRAND FOR RANGE DISTRIBUTION CALCULATION
DIMENSION FD(E»3) o DFN(393) 9 T(39400)yOMEGA(39400)
2 OMINF(I)»THETA(I) »H(393) e N(3IF)
REAL LAMEDA
COMMON VSsALPHASRy LAMEDAYRHOA01yA02y» JrFDOsDFDy Ty OMEGAY
2 OMINFsN»TLAST»PLLAST
A0O=A01
IF(J.EQ.3)NAO=A02
IF(I1.6GT.0.AND,I.LE.NCJ))GO TO 20
ELT=0, )
GO TO 30
TT=T(Js 1)
ELT=EXP(-9,424778%XRRXRR/ (AO+RHOXTT) Y XOMEGA(JrI)/
2 (AO+RHOXTT)XXk2
RETURN
END

»




g " - ks A <5md Ch 0" LS bl

SUBROUTINE FCT(TT,PsDERF)
c EVALUATES DERIVATIVES FOR RUNGE-KUTTA ROUTINE
DIMENSION F(35)yDERF (D)
DIMENSION FIC(3»3)»DFD(3+3)»T(3,400)yOMEGA(32400)
2 OMINF(3)»THETA(I) yEB(3,3) s NC(3)
REAL LAMBDA
COMMON VSyALFHA»RyLAMEBDAYRHO»AOL»A02y JsFIy[IPDy Ty OMEGAY
2 OMINFsN»TLAST»FPIOLAST
A(X)=A0+RHOXX
RETA(X) =2, XRXVS/A(X)
FRPOX)=EXF (-3, 141593%kREkR/A(X))
GAMMA(X)=(FPF(X)/ (1 ,~FF (X)) )X(BETA(X)+3.,141593KRXRXRHO/A (X)) %%2)
AO=A01
IF(J.EQ.3)A0=A02
DERF (1) =ALFHA%F(4)
DERF (2) =ALPHAXF (5)
DERF(3)=LAMBRIAXF (4)
DERF (4) == (ALFHA+LAMBRDALGAMMA(TT) )XP (4)+BETA(TTIXP(3)
DERP(S)=GAMMA(TTIXF (4) - (ALFPHA+RETA(TT) Y ¥F (5)
RETURN
END
SUBROUTINE QUTP(TT,FyDERF» IHLF)NDIMyFRMT)
c OUTFUT ROUTINE FOR RUNGE-KUTTA INTEGRATION
REAL LAMRDA
DIMENSION F(3)»DERP(S) »FRMT(S)
. DIMENSION FD(I»3)yDFD(3+3)yT(39400)yOMEGA(3,400)
2 OMINF(3)»THETACZ) yB(3» %) s N(3Z)
3 COMMON VSyALFHASRyLAMEDAYRHO,AO01»AO2» JsFDIIFDy ToOMEGAY
3 2 OMINF»N»TLAST»FLLAST
. DO 10 I=1,3
FOCIy I)=F(I)
10 DFDCJ» D) =DERF(I)
FOD=F(1Y4+P(2)+F(3)
OMINF () =0MINF(DH(TT-TLASTIR(1 .~ (FDO+PILAST)/24)
TLAST=TT
FIL.AST=FDD
IF(AMODC(TT, +25).GE.0.0001)6G0 TO S0
IFCAMOD(TT2.) GE.0. 0001 . ANDLTT,GT.A.)G0 TO SO
IF(AMOD(TT»8.).GE.0. 0001, ANDTT.GT.20.)60 TO SO
IFCAMON(TT»164)«GE. 0, 0001 AN TT.6T.100.)6G0 TO 50
TYFE 20y TToFoPRIsOMINF(J)
0 FORMATC(IXyF7.256(1XsF5.3)91X2Fb6.2)
IF(AMOD(T Ty . 0625) .GE.0.0001)6G0 TO 70
IF (AMOL(TT»14).GE. 0,000, AN'.TT.GT.4.)G0 TO 70
N =N(J)+1 '
TCIe NI =TT )
OMEGA(JrN()) ) =0OMINF ()
70 IF(FOD.GT.1.)PRMT(5) =1,
RETURN Ve oa b e
END T - I
x Fhom wvix oo o o
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CoaLl. RKGS (FPRMTyYeDERY »NDIMy IHLF»FCTyQUTP» AUX)
FARAMETERS FCT AND OUTF REQUIRE AN EXTERNAL STATEMENT.

DESCRIFTION
FRMT -

PRMT(1)-
FRMT(2) -
FRMT(3) -

PRMT(4) -

PRMT(S) -

DERY

NIDIM

IHLF

OF FARAMETERS

AN INFUT AND OQUTFUT VECTOR WITH DIMENSION GREATER
OR EQUAL TG Sy WHICH SFECIFIES THE FARAMETERS OF
THE INTERVAL AND OF ACCURACY AND WHICH SERVES FOK
COMMUNICATION BETWEEN OUTPUT SUEROUTINE (FURNISHED
BY THE U3ER) AND SURROUTINE RKGS, EXCEPT FRMT(S)
THE COMFONENTS ARE NOT DESTROYED BY SUBROUTINE
RKGS AND THEY ARE

LOWER ROUND OF THE INTERVAL (INPUT),

UFFER ROUND OF THE INTERVAL (INPUT)»

INITIAL INCREMENT OF THE INDEFENDENT VARIABLE
CINFUT)»

UFPER ERROR BOUND (INPUT). IF ABSOLUTE ERROR IS
GREATER THAN FRMT(4)y INCREMENT GETS HALVED.

IF INCREMENT IS LESS THAN FRMT(3) AND ARSOLUTE
ERROR LESS THAN PRMT(4) /50, INCREMENT GETS DOUBLED,
THE USER MAY CHANGE PRMT(4) RY MEANS OF HIS
OUTFUT SUBROUTINE,

NO INPUT FARAMETER, SURBROUTINE RKGS INITIALIZES
PRMT(5)=0, IF THE USER WANTS TO TERMINATE
SUBROUTINE RKGS AT ANY OUTRUT FOINTs HE HAS TO
CHANGE FRMT(S5) TO NON-ZERD RY MEANS OF SUBRROUTINE
OUTF. FURTHER COMFONENTS OF VECTOR PRMT ARE
FEASIBLE IF ITS DIMENSION IS DEFINED GREATER

THAN 5. HOWEVER SUBROUTINE RKGS NOES NOT REQUIRE
AND CHANGE THEM., NEVERTHELESS THEY MAY RE USEFUL
FOR HANDING RESULT VALUES TO THE MAIN FROGRAM
(CALLING RKGS) WHICH ARE ORTAINED BY SFPECIAL
MANIFULATIONS WITH QUTFUT DATA IN SUBROUTINE OQUTP.
INFUT VECTOR OF INITIAL VALUES. (DESTROYED)
LATERON Y I8 THE RESULTING VECTOR OF DEFENDENT
VARTARLES COMPUTED AT INTERMEDIATE FOINTS X,

INFUT VECTOR OF ERROR WEIGHTS., (DESTROYED)

THE SUM OF ITS COMFONENTS MUST BE EQUAL TO 1.
LATERON DERY I8 THE VECTOR OF DERIVATIVES» WHICH
RELONG TO FUNCTION VALUES Y AT A FOINT X.

AN TNFUT VALUEy WHICH SFECIFIES THE NUMRER OF
EQUATIONS IN THE SYSTEM.,

AN OUTFUT VALUE, WHICH SFECIFIES THE NUMBER OF
BISECTIONS OF THE INITIAL INCREMENT, IF IHLF GETS
GREATER THAN 10» SUEBROUTINE RKGS RETURNS WITH
ERROR MESSAGE IHLF=11 INTO MAIN FROGRAM. ERROR
MESSAGE IHLF=12 OR IHLF=13 AFFEARS IN CASE
FIRMT(3)=0 OR IN CASE SIGN(FRMT(3)).NE.SIGN(PRMT(2)-
PRMT(1)) RESFECTIVELY.
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FCT - THE NAME OF AN EXTERNAL SUBROUTINE USED. THIS
SURROQUTINE COMFUTES THE RIGHT HAND SIDES DERY OF
THE SYSTEM TO GIVEN VALUES X AND Y. ITS PARAMETER
LIST MUST BE XsYsDERY. SURROUTINE FCT SHOULD
NOT DESTROY X AND Y.

GUTP = THE NAME OF AN EXTERNAL OUTFUT SUBROUTINE USED.
ITS FARAMETER LIST MUST BE X»YsDERY,»IHLFsNDIM,PRMT,
NONE OF THESE FPARAMETERS (EXCEPT» IF NECESSARYy
PRMT (4) yFRMT(S5)r.+. ) SHOULDR BE CHANGED BY
SUBROUTINE OUTF. IF FRMT(S) IS CHANGED TO NON-ZEROy
SUBROUTINE RKGS IS TERMINATED,

AUX - AN AUXILIARY STORAGE ARRAY WITH 8 ROWS AND NDIM
COLUMNS.,

REMARKS

THE PROCEDURE TERMINATES AND RETURNS TO CALLING FROGRAMy IF

(1) MORE THAN 10 RISECTIONS OF THE INITIAL INCREMENT ARE
NECESSARY TO GET SATISFACTORY ACCURACY (ERROR MESSAGE
IHLF=11)»

(2) INITIAL INCREMENT IS EQUAL TO O OR HAS WRONG SIGN
(ERROR MESSAGES IHLF=12 OR IHLF=13),

(3) THE WHOLE INTEGRATION INTERVAL IS WORKED THROUGH,

(4) SUBRROUTINE OUTF HAS CHANGED PRIMT(S) TO NON-ZERQ,

SUBROUTINES AND FUNCTION SURFROGRAMS REQUIRED
THE EXTERNAL SURROQUTINES FCT(X»YyDERY) AND 3
QUTP(Xy Yy DERY » IHLFyNDIM,FRMT) MUST EE FURNISHED BY THE USER. 1

METHOD
EVALUATION IS DONE BY MEANS OF FOURTH ORDER RUNGE-KUTTA
FORMULAE IN THE MODIFICATION DUE TO GILL. ACCURACY IS
TESTED COMFARING THE RESULTS OF THE FROCEDURE WITH SINGLE
AND DOURLE INCREMENT. :
SUBROUTINE RKGS AUTOMATICALLY ADJUSTS THE INCREMENT DURING
THE WHOLE COMPUTATION RY HALVING OR DOUBLIMG. IF MORE THAN
10 BISECTIONS QOF THE INCREMENT ARE NECESSARY TO GET
SATISFACTORY ACCURACYy THE SUBROUTINE RETURNS WITH
ERROR MESSAGE IMLF=11 INTO MAIN FROGRAM.
TO GET FULL FLEXIRILITY IN OUTFUTy AN OUTPUT SUBROUTINE
MUST EE FURNISHED RY THE USER.,
FOR REFERENCE,» SEE
RALSTON/UWILF» MATHEMATICAL METHODS FOR DIGITAL COMPUTERS»
WILEYy» NEW YORK/LONIONy 1960y FF.110-120.

ik ek o -y e o

B0 0 0.0 .0 4 00680000000 000000000000000000006000000000000000000000000000

aoooooooaoaooaoaooOaooOoOoaOcooOooOoOOCoOOaaoOOoaooOnGann

ot ITY FRACTICABLE

LU PO - m—T

THIS PAGE IT
FROM Gut ¥ & womt e

« A=5 =




SURROUTINE RKGS(FRMT,»Y,»DERY»NDIMyIHLF»FCT»OUTP»AUX)

DIMENSION Y(1)»DERY(1)»AUX(Bs1)»A(A)sB(4)+C(4),PRMT(1)
DO 1 I=1»NDIM
1 AUX(By»I)=,06666667XDERY(I)
X=FRMT (1)
XEND=FRMT (2)
H=FRMT(3)
FRMT(S) =0,
CALL FCT(X»Y»DERY)

ERROR TEST
IF(HR(XEND=X))38»37,2

o oo

PREPARATIONS FOR RUNGE-KUTTA METHOD
2 A(1)=,5

A(2)=,2928932

A(3)=1,707107

AC4)=,16664667

B(1)=2,

R(2)=1,

B(3)=1,

B(4)=2,

C(1)=,5
1 C(2)=,2928932
E C(3)=1.,707107

C(4)=.,5

c PREFPARATIONS OF FIRST RUNGE-KUTTA STEP
00 3 I=1yNDIM
AUX(1,I)=Y(I)
AUX(2y 1) =DERY (1)
AUX(3,1I)=0,

3 AUX(H2I)=0,
IREC=0
H=H+H
IHLF=-1
ISTEFP=0
IEND=0

aan

START OF A RUNGE-KUTTA STEFP
IFCCXHH-XENIDXH) 7y 695
H=XEND-X

IEND=1

o d

c RECORDING OF INITIAL VALUES OF THIS STEP _
CALL OUTF(XyYsDERY s IRECyNIIMyFRMT) |
IF(PRMT(5))40s8/40 . vRAvELCHEME :
ITEST=0 e ,;v,;.‘hnxé’
ISTEP=ISTEF+1 gPAGE 1700 50DV
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START OF INNERMOST RUNGE-KUTTA LOOP
J=1
10 AJ=A(T)
BJ=B(J)
CJ=C(I)
00 11 I=1,NDIM
R1=HXDERY(I)
R2=AJK(R1-BJKAUX(6,1))
Y(I)=Y(I)+R2
R2=R2+R2+R2
11 AUX(6sI)=AUX(6yI)+R2-CIXR1L ]
: IF(J-4)12,15,15
3 12 J=J+1
: IF(J-3)13+14,13

13 X=X+ .5%H ' : ;
14 CALL FCT(X»YsDERY) ' i
GOTO 10
END OF INNERMOST RUNGE-KUTTA LOOP

aonooOoon

TEST OF ACCURACY E
15 IFCITEST)16916920

.00

IN CASE ITEST=0 THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY :
16 DO 17 I=1,NDIM %
17 AUX(4sI)=Y(I) ‘

ITEST=1

ISTEF=ISTEF+ISTEP-2
18 IHLF=THLF+1

X=X=H

M=\ S5kH

[0 19 I=1,NDIM

Y(I)=AUX(1s1)

DERY (1) =AUX (2, 1)
19 AUX (65 1)=AUX(3s1)

GOTO 9

c IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIRLE
20 IMOD=ISTEP/2
IF(ISTEP-IMOD-IMOD) 21,235,211
21 CALL FCT(Xr»YsDERY)
DO 22 I=1,NDIIM
AUX(S»T)=Y(I)
22 AUX(7»1)=DERY(I)
GOT0 9

c COMPUTATION OF TEST VALUE DELT e T D .
23 DELT=0. ﬁxSLEFith;»»»*
DO 24 I=1,NDIM ok CUF

24 DELT=DELTH+AUX(8y 1) KARS(AUX(AsT1)=Y(I))
IF(DELT-FRMT(4))28,28,25

[




il g (it i

aon

25
26
27

28

29

30
31

32

33

34
35

36

37

38
39
40

ERROR IS TOO GREAT
IF(IHLF-10)26+36236
DO 27 I=1/,NDIM

AUX (4 I)=AUX(S» 1)
ISTEF=ISTEP+ISTEF-4
X=X~H

IEND=0

GOTO 18

RESULT VALUES ARE GOOD
CALL FCT(X»YsDERY)

N0 29 I=1»NDIM

AUX(Ly» 1))=Y (1)

AUX (2 I1)=DERY(I)
AUX(3»I2=AUX(6¢1)
Y(I)=AUX(S5, 1)

DERY (1) =AUX(7,I)

CALL OUTP(X-Hy»YsDERY s IHLFsNDIMrPRMT)
IF(PRMT(5))40,30+40

0O 31 I=1,NDIM
Y(I)=AUX(1yI)
DERY(I)=AUX(2y1)
IREC=IHLF
IF(IEND)32,32,39

INCREMENT GETS DOURLED
IHLF=IHLF-1

ISTEFP=ISTEP/2

H=H+H

IF(IHLF)4,33,33
IMOD=ISTEP/2
IF(ISTEP-IMOD~-IMOD) Ay 34y 4
IF(DELT-02XFRMT(4) )35, 3594
IHLF=IHLF-1

ISTEP=ISTEF/2

H=H+H

GOTO 4

RETURNS TO CALLING PROGRAM

IHLF=11

CALL FCT(XsY»DERY)

GOTO 39

IHLF=12

GOTO 39

IHLF=13

CALL OUTP(XsY»DERY s IHLFyNDIMyPRMT) ,Tﬂnsﬁs
RETURN oy TRV

END "
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